How-To Geek

How to Do a Linear Calibration Curve in Excel

ALEX EDWARDS J @howtogeek MARCH 13, 2019, 10:24AM EDT

Excel has built-in features that you can use to display your calibration data and calculate a line-of-best-fit. This can be helpful when you are writing a chemistry lab report or programming a correction factor into a piece of equipment.

In this article, we'll look at how to use Excel to create a chart, plot a linear calibration curve, display the calibration curve's formula, and then set up simple formulas with the SLOPE and INTERCEPT functions to use the calibration equation in Excel.

What is a Calibration Curve and How is Excel Useful When Creating One?

To perform a calibration, you compare the readings of a device (like the temperature that a thermometer displays) to known values called standards (like the freezing and boiling points of water). This lets you create a series of data pairs that you'll then use to develop a calibration curve.

A two-point calibration of a thermometer using the freezing and boiling points of water would have two data pairs: one from when the thermometer is placed in ice water (32°F or 0°C) and one in boiling water (212°F or 100°C). When you plot those two data pairs as points and draw a line between them (the calibration curve), then assuming the response of the thermometer is linear, you could pick any point on the line that corresponds to the value the thermometer displays, and you could find the corresponding "true" temperature.

So, the line is essentially filling in the information between the two known points for you so that you can be reasonably certain when estimating the actual temperature when the thermometer is reading 57.2 degrees, but when you have never measured a "standard" that corresponds to that reading.

Excel has features that allow you to plot the data pairs graphically in a chart, add a trendline (calibration curve), and display the calibration curve's equation on the chart. This is useful for a visual display, but you can also calculate the formula of the line using Excel's SLOPE and INTERCEPT functions. When you enter these values into simple formulas, you will be able to automatically calculate the "true" value based on any measurement.

Let's Look at an Example

For this example, we will develop a calibration curve from a series of ten data pairs, each consisting of an X-value and a Y-value. The X-values will be our "standards," and they could represent anything from the concentration of a chemical solution we are measuring using a scientific instrument to the input variable of a program that controls a marble launching machine.

The Y-values will be the "responses," and they would represent the reading the instrument provided when measuring each chemical solution or the measured distance of how far away from the launcher the marble landed using each input value.

After we graphically depict the calibration curve, we will use the SLOPE and INTERCEPT functions to calculate the calibration line's formula and determine the concentration of an "unknown" chemical solution based on the instrument's reading or decide what input we should give the program so that the marble lands a certain distance away from the launcher.

Step One: Create Your Chart

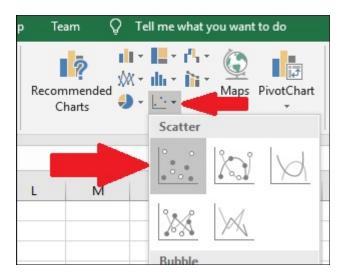
Our simple example spreadsheet consists of two columns: X-Value and Y-Value.

	А	В	С	D	E	F	G	Н	1	J
1										
2		X-Value	Y-Value							
3		1	1.04							
4		2	1.95							
5		3	3.06							
6		4	4.04							
7		5	4.66							
8		6	5.58							
9		7	6.91							
10		8	8.74							
11		9	9.78							
12		10	10.14							
13										
14										
15										
16										
		1								

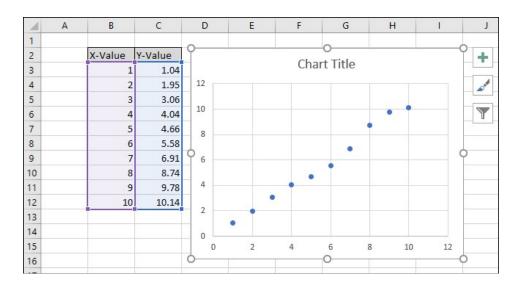
Let's start by selecting the data to plot in the chart.

First, select the 'X-Value' column cells.

	А	В	С	D	E	F	G	Н	1	J
1										
2		X-Value	Y-Value							
3		1	1.04							
4		2	1.95							
5		3	3.06							
6		4	4.04							
7		5	4.66							
8		6	5.58							
9		7	6.91							
10		8	8.74							
11		9	9.78							
12		10	10.14							
13										
14										
15										
16										
			3							


Now press the Ctrl key and then click the Y-Value column cells.

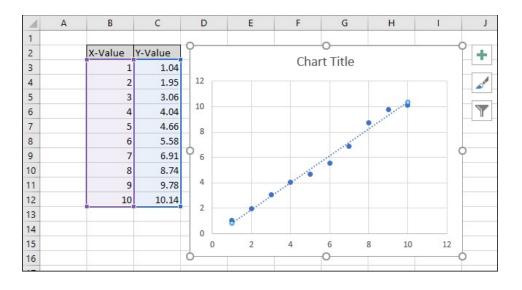
1	А	В	С	D	E	F	G	Н	I	J
1										
2		X-Value	Y-Value							
3		1	1.04							
4		2	1.95							
5		3	3.06							
6		4	4.04							
7		5	4.66							
8		6	5.58							
9		7	6.91							
10		8	8.74							
11		9	9.78							
12		10	10.14							
13										
14										
15										
16										
			3							


Go to the "Insert" tab.

Home	Insert	Draw	Page Layou	t For	mulas	Data	Review	View	Developer	Add-ins	s
Recomme PivotTa	ended Tal	De Pic	tures Online Pictures	Shapes	Glcons	3D Models *	SmartArt	ot -	🕂 Get Add-ins 🎝 My Add-ins	↓ Bing Maps	Per
Tables				Ш	ustratio	ons			Ad	d-ins	

Navigate to the "Charts" menu and select the first option in the "Scatter" drop-down.

A chart will appear containing the data points from the two columns.


Select the series by clicking on one of the blue points. Once selected, Excel outlines the points will be outlined.

	А	В	С	D	E	F	G	Н	1	J
1				0			0			_
2		X-Value	Y-Value	Ŭ		cl		5.5X	10	+
3		1	1.04	5		Cr	hart Title			
4		2	1.95	12						and a
5		3	3.06							
6		4	4.04	10				86 8	6	Y
7		5	4.66	8				%		
8		6	5.58				36			
9		7	6.91	6			*			0
10		8	8.74			1.1	*			
11		9	9.78	4		*				
12		10	10.14			86				
13				2	*					
14				0	00					
15				0	2	4	6	8 1	.0 12	
16				Ò	9	96	0	1	1	-0

Right-click one of the points and then select the "Add Trendline" option.

1	А	В	С	D	E		F	G	1	H	T	L
1				~				~				_
2		X-Value	Y-Value	1			cl					+
3		1	1.04	8			Chai	rt Title	D.	-	2	
4		2	1.95	12						-	Serie	es 1
5		3	3.06						Fil	I Outl		
6		4	4.04	10						0		U
7		5	4.66	8					80	Delete		
8		6	5.58	0				26	-	_		
9		7	6.91	96				00	10-	Reset t	o M <u>a</u> tch	Style
10		8	8.74				*	36	10	Chang	e Series (Chart Type
11		9	9.78	4		8	*	0	E.	Select	Data	
12		10	10.14			*			0	3-D Ro	tation	
13				2	*				1			
14				0						Add Da	ata La <u>b</u> el	5
15				0	2		4			Add Tr	endline	
16				0	1	24		0	- 18	Format	Data Se	ries
												12

A straight line will appear on the chart.

On the right side of the screen, the "Format Trendline" menu will appear. Check the boxes next to "Display Equation on chart" and "Display R-squared value on chart." The R-squared value is a statistic that tells you how closely the line fits the data. The best R-squared value is 1.000, which means every data point touches the line. As the differences between the data points and the line grow, the r-squared value drops, with 0.000 being the lowest possible value.

Y 🔺	Format Trendlin	ne	- ×
	Trendline Options 🔻		
	🗇 🏠 💼		
	Trendline Options		
	C Exponential		
	🖉 🖲 Linear		
	C Logarithmic	-	
	🔬 🔿 <u>P</u> olynomial	Or <u>d</u> er	2 ‡
	🚽 🔿 Po <u>w</u> er		
	O <u>M</u> oving Average	P <u>e</u> riod	2 🗘
	Trendline Name		
	• <u>A</u> utomatic	Linear	(Series1)
	○ <u>C</u> ustom		
	Forecast		
	<u>F</u> orward	0.0	period
	<u>B</u> ackward	0.0	period
	Set Intercept		0.0
	Display <u>E</u> quation or	n chart	
	Display <u>R</u> -squared v	alue on cl	hart

The equation and R-squared statistic of the trendline will appear on the chart. Note that the correlation of the data is very good in our example, with an R-squared value of 0.988.

The equation is in the form "Y = Mx + B," where M is the slope and B is the y-axis intercept of the straight line.

	А	В	С	D	E	F	G	Н	I	J
1				~			~			_
2		X-Value	Y-Value	<u> </u>		ch				+
3		1	1.04			Cha	art Title			
4		2	1.95	12						and a
5		3	3.06				y = 1.0584			
6		4	4.04	10			R ² = 0	988 •		Y
7		5	4.66	8				•		
8		6	5.58							
9		7	6.91	96			100			9
10		8	8.74							
11		9	9.78	4						
12		10	10.14	-						
13				2						
14				0	0					
15				0	2	4	6	8 10	12	
16				0		96	0	3	<u>x</u>	0

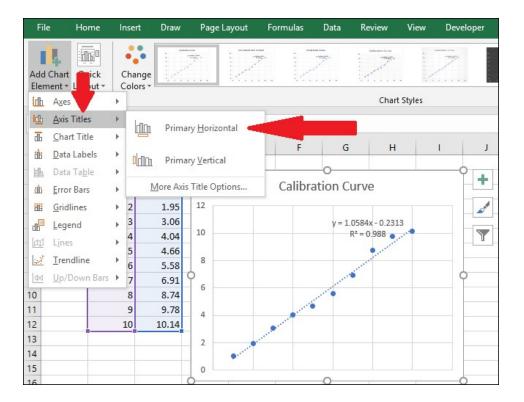
Now that the calibration is complete, let's work on customizing the chart by editing the title and adding axis titles.

To change the chart title, click on it to select the text.

	Α	В	С	D	E	F	G	н	1	J
1				0		_	0			_
2		X-Value	Y-Value	1						-0
3		1	1.04				art Title			
4		2	1.95	12						
5		3	3.06				y = 1.0584	x - 0.2313		
6		4	4.04	10			R ² = (.988 •		
7		5	4.66	8						
8		6	5.58							
9		7	6.91	96			1			9
10		8	8.74							
11		9	9.78	4						
12		10	10.14							
13				2						
14				0						
15				0	2	4	6	8 10	12	
16				0			0		9	0
		10								

Now type in a new title that describes the chart.

	А	В	С	D	E	F	G	Н	1	J
1				0			0	100		_
2		X-Value	Y-Value	ų		C-lib		••••••		Y
3		1	1.04				tion Cur			
4		2	1.95	12						
5		3	3.06					4x - 0.2313		
6		4	4.04	10			R ² =	0.988		
7		5	4.66	8						
8		6	5.58	0			1			
9		7	6.91	96						9
10		8	8.74				•			
11		9	9.78	4						
12		10	10.14							
13				2						
14				0						
15				0	2	4	6	8 10	12	
16				0	34		0	25	(Ò
								5		


To add titles to the x-axis and y-axis, first, navigate to Chart Tools > Design.

				Ch	art Tools					
Developer	Add-ins	Help	Team	Design	Format	t Ç	Tell me v	what you want	to do	
Text	General					Normal		Bad		Good
e & Center 🔹	\$ - %	9 €.0			Format as	Check 0	:ell	Explanato	ry	Input
5	Nur	nber	5	innatting	Table				Style	5
2										
I J	К	L		м	N	0	P	Q	R	

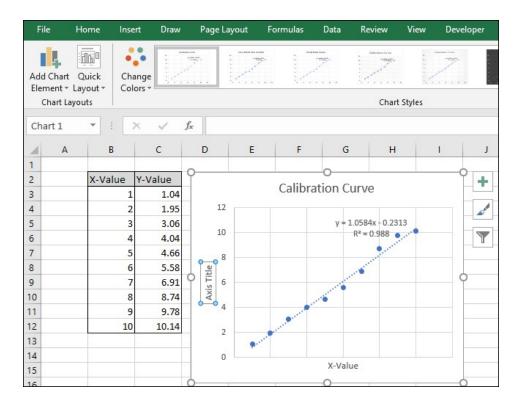
Click the "Add a Chart Element" drop-down.

Fi	le	Home I	nsert	Draw	Page	Layout	Formulas	Data	Review	View	Developer
100 C 100 C 100 C	d Chart ment * I		Change Colors →						faileview for me		
-	Chart Lay		001015						Chart	Styles	
Ch	art 1	•	×	~	f _x						
	A	В		с	D	E	F	G	н		I J
1					_	1		_		1	
2		X-Value	e Y-V	alue	0		0.111				+
3			1	1.04			Calibi	ration C	urve		
4			2	1.95	12						and a
5			3	3.06)584x - 0.2313		
6			4	4.04	10			F	2 = 0.988		Y
7			5	4.66	8						
8			6	5.58					1		
9			7	6.91	6						9
10			8	8.74			1				
11			9	9.78	4						
12			10	10.14	2						
13					2						
14					0						
15					0	2	4	6	8	10	12
16					0			0			0

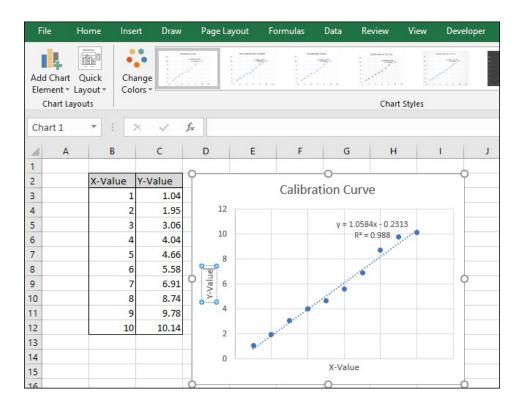
Now, navigate to Axis Titles > Primary Horizontal.

An axis title will appear.

Fi	ile I	Home	Insert	Draw	Page l	Layout	Formulas	Data	Review	View	Developer
	d Chart ment + L	Quick	Change Colors •			7	112	2	Editorition Come		
	Chart Layo	-	001015						Chart	Styles	
Ch	art 1	•	×	~	fx						
	A	В		с	D	E	F	G	н		I J
1	1		i i		~			~			
2		X-Valu	e Y-V	alue	1		c-l'h-				+
3			1	1.04			Calibr	ation C	urve		
4			2	1.95	12						
5			3	3.06	10				.0584x - 0.231	-	
6			4	4.04	10				R ² = 0.988		Y
7			5	4.66	8				•		
8			6	5.58					s		
9			7	6.91	96						V
10			8	8.74							
11			9	9.78	4						
12			10	10.14	2						
13		-									-
14					0				9		
15		-	_					Axis Title	0		
16					0			0		1	0


To rename the axis title, first, select the text, and then type in a new title.

Fil	e ⊦	lome Ins	ert Draw	Page l	Layout	Formulas	Data	Review	View	Developer
	Chart (ange					Editoritor Com		1000000 1100
	hart Layo							Chart	Styles	
Cha	art 1	•	× v	f _x						
	A	В	с	D	E	F	G	н		I J
1				0			0		Ĩ.	
2		X-Value	Y-Value	ľ		C-lib.				- V
3		1	l 1.04			Calibr	ation C	urve		
4		2	1.95	12						
5		3	3.06					.0584x - 0.231	3	
6		4	4.04	10				R ² = 0.988		
7		5	4.66	8				•		
8		6	5 5.58							
9		1	6.91	96					-	0
10		8	8.74							
11		9	9.78	4						
12		10	10.14	2						
13				1						
14				0			o	0		
15							X-Value	0		
16				0	12		0			0

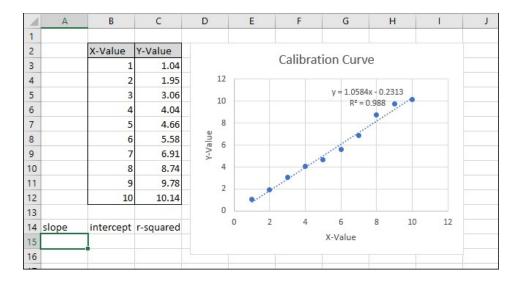

Now, head to Axis Titles > Primary Vertical.

File	e Home	lı	nsert	Draw	Page Layout	Formulas	Data	Review	View	Developer
	Chart Quick		Change Colors ▼				7	falleyine farm		
ldh	A <u>x</u> es	•						Chart	Styles	
<u>іф</u> Ф	<u>A</u> xis Titles Chart Title	•	h	Prima	ry <u>H</u> orizontal					
iii idk	Data Labels	•		Prima	ry <u>V</u> ertical	F	G	Н		L I
- u	Error Bars	•	N	<u>lore Axis</u>	Title Options	Calibra	ation C	urve		
讍	<u>G</u> ridlines	•	2	1.95	12					
	Legend	•	3	3.06	10			.0584x - 0.231	-	-
- 100	Lines	•	4	4.04	10			R ² = 0.988		
1	Trendline		5	4.66	8		- 2			
	 Up/Down Bars		6 7	5.58			and the second	•		0
10	oproventiours		8	6.91 8.74	6		•			
11	1		9	9.78	4		•		_	
12	5		10	10.14						
13					2		1			
14					0		o	0		
15			1				X-Value	0		
16					0		0			Ó

An axis title will appear.

Rename this title by selecting the text and typing in a new title.

Your chart is now complete.


File	e H	lome Inse	ert Draw	Page La	yout	Formulas	; Data	Review	View	Develo	oper
Pas •		opy 🔹 ormat Painter	Calibri B I L						🗄 Merg		er ▼
S18		•	× ~ f	e l							
	A	В	с	D	E	F	G	i F	1	1	J
1											
2		X-Value	Y-Value			Calik	oration C	unvo.			
3		1	1.04			Calli	Jacon C	urve			
4		2	1.95	12							
5		3	3.06	10			y =	1.0584x - 0.2			
6		4	4.04	10				R ² = 0.988			
7		5	4.66	8							
8		6	5.58	ē							
9		7	6.91	Y-Value o		-	1				
10		8	8.74								
11		9	9.78	4							
12		10	10.14	2							
13				2		1					
14				0							
15							X-Val	ue			
16											

Step Two: Calculate the Line Equation and R-Squared Statistic

Now let's calculate the line equation and R-squared statistic using Excel's built-in SLOPE, INTERCEPT, and CORREL functions.

To our sheet (in row 14) we've added titles for those three functions. We'll perform the actual calculations in the cells beneath those titles.

First, we will calculate the SLOPE. Select cell A15.

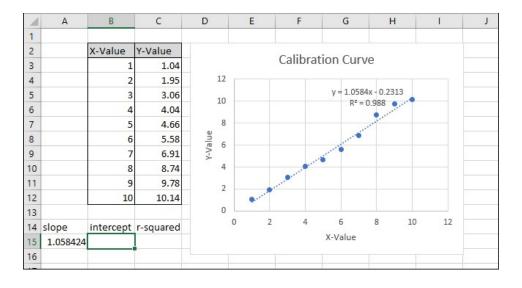
Navigate to Formulas > More Functions > Statistical > SLOPE.

Home	Insert	Draw	Page Lay	out F	ormulas	Data	Revie	w View	De	veloper Add-ins
AutoSum	Recent Used	ly Financial	Logical Te		& Lookup	<mark>⊕</mark> & Math & :e ▼ Trig ▼		lore Na	ame nager	☑ Define Name ▼ ℜ Use in Formula ▼ ₽ Create from Select
-		1	Function Lib	rary				<u>Statistical</u>	Þ	RANK.AVG
+	: 🖂	~ t	Se l				Ŕ	Engineering	×	RANK.EQ
	в	c	D	E	F	G	L	<u>C</u> ube	۲	RSQ
	0	~	0	-		0	0	Information	•	SKEW
X-Va	alue Y	-Value					LA	<u>C</u> ompatibility		SKEW.P
	1	1.04			Calibra	ation Cur		Web	×	SLOPE
	2	1.95	12							SMALL
	3	3.06	10			y = 1.05	84x - 0 = 0.98	-		STANDARDIZE
	4	4.04				R-	= 0.96	•		STDEV.P
	5	4.66	8							
	6	5.58	an e			1000				STDEV.S
	7	6.91	y-Value							STDEVA
	8	8.74	4							STDEVPA
	9	9.78	2							STEYX
	10	10.14	~	A						TDICT

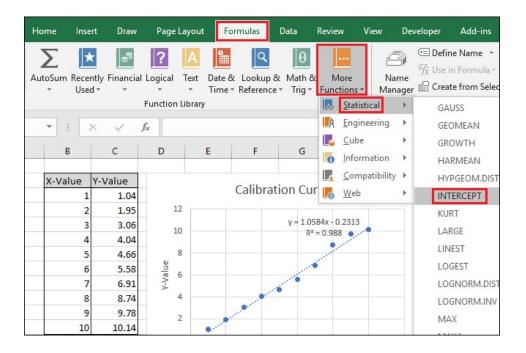
The Function Arguments window pops up. In the "Known_ys" field,

select or type in the Y-Value column cells.

1	Α	В	C	D	E	F	G	Н	1		J
1											
2	Ĵ.	X-Value	Y-Value			C-l'h					
3		1	1.04			Calibrat	tion Curv	e			
4	l.	2	1.95	12							_
5		3	3.06	Fun	ction Argu	ments					
6	Ĩ.	4	4.04	SLC	DE						
7		5	4.66	SLC	PE					-	
8	Ĩ.	6	5.58	-		Known_ys	C3:C12		1		{1.04
9		7	6.91			Known_xs			1	=	array
10		8	8.74							=	
11		9	9.78	Retu	rns the slo	pe of the line	ear regression	n line throug	h the given	data p	point
12		10	10.14				Known_ys i	s an array or	cell range o	of num	eric o
13							r	numbers or n	ames, array	s, or re	efere
14	slope	intercept	r-squared								
15	3:C12)			Form	ula result :	_					
16											
				Help	on this fur	nction					


In the "Known_xs" field, select or type in the X-Value column cells. The order of the 'Known_ys' and 'Known_xs' fields matters in the SLOPE function.

1	А	В	C	D	E	F	G	н	1		J
1											
2	1	X-Value	Y-Value			c-lib-					
3		1	1.04			Calibra	tion Curv	e			
4		2	1.95	12							
5		3	3.06	Fun	ction Argur	ments					
6	1	4	4.04	510	DE						
7		5	4.66	SLC							
8	1	6	5.58	-		Known_ys	C3:C12		<u>±</u>	=	{1.04;
9		7	6.91			Known_xs	B3:B12		Ť	=	{1;2;3
10		8	8.74							=	1.058
11		9	9.78	Retu	irns the slop	pe of the lin	ear regression	n line throug	h the given o	data	point
12		10	10.14				Known_xs i	s the set of ir	ndependent	dat	a poin
13							ā	arrays, or refe	rences that	cont	tain nu
14	slope	intercept	r-squared								
15	B12)			Form	nula result =	= 1.058424	242				
16											
			3	Help	on this fur	oction				_	


Click "OK." The final formula in the formula bar should look like this:

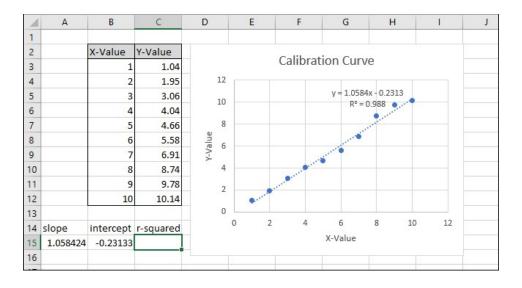
=SLOPE(C3:C12,B3:B12)

Note that the value returned by the SLOPE function in cell A15 matches the value displayed on the chart.

Next, select cell B15 and then navigate to Formulas > More Functions > Statistical > INTERCEPT.

The Function Arguments window pops up. Select or type in the Y-Value column cells for the "Known_ys" field.

1	A	В	C	D	E	F	G	н	I		J
1											
2	Í.	X-Value	Y-Value			o					
3		1	1.04			Calibra	tion Curv	'e			
4	1	2	1.95	12		1.5. 50				1	_
5		3	3.06	Func	tion Argu	ments					
6	Ĩ.	4	4.04	INTE	RCEPT						
7		5	4.66			Known_ys	C3:C12		Ţ	=	{1.04
8	Ţ	6	5.58			Known xs	CSICIL		1		array
9		7	6.91			Known_xs			T	-	allay
10	1	8	8.74							=	
11		9	9.78			point at which lues and y-val		tersect the y-	axis by using	ab	est-fi
12		10	10.14			-		the depende	ant cat of ab		tion
13								ames, arrays,			
14	slope	intercept	r-squared								
15	1.058424)		-							
16	1			Form	ula result	=					
1				-							


Select or type in the X-Value column cells for the "Known_xs" field. The order of the 'Known_ys' and 'Known_xs' fields also matters in the INTERCEPT function.

A	В	C	D	E	F	G	Н	I		J
ĺ.	X-Value	Y-Value			C-lih-		10			
	1	1.04			Calibra	tion Curv	/e			
Ĩ.	2	1.95	12		1.					_
	3	3.06	Func	tion Argui	ments					
i.	4	4.04	INTE	RCEPT						
	5	4.66			Known vs	C3:C12		†	=	{1.04
Ĵ.	6	5.58			_					
	7	6.91			Known_xs	B3:B12		T	=	{1;2;3
1	8	8.74	10000							-0.23
	9	9.78					tersect the y	-axis by using) a b	est-fi
j.	10	10.14					the depend	ant cat of ab		ations
slope	intercept	r-squared								20000
1.058424	,B3:B12)									
			Form	ula result =	-0.2313333	33				
	slope	X-Value 1 2 3 4 4 5 6 7 8 9 9 10	X-Value Y-Value 1 1.04 2 1.95 3 3.06 4 4.04 5 4.66 6 5.58 7 6.91 8 8.74 9 9.78 10 10.14 slope intercept	X-Value Y-Value 1 1.04 2 1.95 3 3.06 4 4.04 5 4.66 6 5.58 7 6.91 8 8.74 9 9.78 10 10.14 slope intercept 1.058424 ,83:B12)	X-Value Y-Value 1 1.04 2 1.95 3 3.06 4 4.04 5 4.66 6 5.58 7 6.91 8 8.74 9 9.78 10 10.14 slope intercept 1.058424 ,B3:B12)	X-Value Y-Value Calibra 1 1.04 12 2 1.95 12 3 3.06 14 4 4.04 10 5 4.66 5.58 7 6.91 10 8 8.74 Calculates the point at which the known x-values and y-values and y	X-Value Y-Value Calibration Curv 1 1.04 1 2 1.95 1.95 3 3.06 1 4 4.04 1 5 4.66 1 6 5.58 1 7 6.91 83.8.74 9 9.78 Calculates the point at which a line will in the known x-values and y-values. slope intercept r-squared Known_ys is not specified in the context of the point is not specified in the known x-values and y-values.	X-Value Y-Value Calibration Curve 1 1.04 1 2 1.95 1 3 3.06 1 4 4.04 1 5 4.66 1 6 5.58 1 7 6.91 8 8 8.74 9 9 9.78 Calculates the point at which a line will intersect the y the known x-values and y-values. Slope intercept r-squared 1.058424 1.058424 RB:B12 1.058424	X-Value Y-Value 1 1.04 2 1.95 3 3.06 4 4.04 5 4.66 6 5.58 7 6.91 8 8.74 9 9.78 10 10.14 slope intercept r-squared 1.058424, B3:B12 4	X-Value Y-Value 1 1.04 2 1.95 3 3.06 4 4.04 5 4.66 6 5.58 7 6.91 8 8.74 9 9.78 10 10.14 slope intercept r-squared 1.058424 ,83:812)

Click "OK." The final formula in the formula bar should look like this:

```
=INTERCEPT(C3:C12,B3:B12)
```

Note that the value returned by the INTERCEPT function matches the y-intercept displayed in the chart.

Next, select cell C15 and navigate to Formulas > More Functions > Statistical > CORREL.

Home I	nsert Drav	w Page La	yout F	ormulas	Data	Revie	w Viev	v Der	veloper Add-ins
AutoSum Re	ccently Finance			& Lookup & Reference		1000	lore tions *	Name Manager	 ☑ Define Name ▼ ℜ Use in Formula ▼ ☑ Create from Select
		Function Li	brary				<u>S</u> tatistica	•	CHISQ.INV
-	хv	fx				LA.	Engineeri	ng 🕨	CHISQ.INV.RT
							Cube	+	CHISQ.TEST
В	С	D	E	F	G	6	Informati	on 🕨	CONFIDENCE.N
X-Value	Y-Value					L	<u>C</u> ompatil	oility ▶	CONFIDENCE.T
in Fund	1 1.0	4		Calibrat	ion Cur	6	Web	+	CORREL
	2 1.9	5 12	<u> </u>					- 1	COUNT
	3 3.0	6 10			y = 1.05	84x - 0 = 0.98	-		COUNTA
	4 4.0				R	= 0.98			COUNTBLANK
	5 4.6								and the second
	6 5.5	8 en			1000				COUNTIF
	7 6.9	1							COUNTIFS
	8 8.7	4 4	-		-				COVARIANCE.P
	9 9.7	8 2							COVARIANCE.S
	10 10.1		Q						DEVCO

The Function Arguments window pops up. Select or type in either of the two cell ranges for the "Array1" field. Unlike SLOPE and INTERCEPT, the order does not affect the result of the CORREL function.

1	A	В	С	D	E	F	G	Н	1	J
1										
2	Í.	X-Value	Y-Value			C-PL				
3		1	1.04			Calibrat	tion Curv	e		
4	1	2	1.95	12						
5		3	3.06	Fund	tion Argum	ents				
6	Ĩ.	4	4.04	COF	DEL					
7		5	4.66	COP	REL					1
8	ĺ.	6	5.58			Array1	B3:B12		Ť	= {1;2
9		7	6.91			Array2			Ť	= arr
10	j l	8	8.74							=
11		9	9.78	Retur	rns the corre	lation coeffi	cient betwee	n two data s	ets.	
12		10	10.14					a cell range		
13							01	references t	hat contain	numbers
14	slope	intercept	r-squared							
15	1.058424	-0.23133	B3:B12)	Form	ula result =					
16										
				Help	on this fund	tion				

Select or type in the other of the two cell ranges for the "Array2" field.

1	A	В	С	D	E	F	G	н	I		J
1											
2	Í.	X-Value	Y-Value			C-lib		16			
3		1	1.04			Calibra	tion Curv	e			
4	Ĩ.	2	1.95	12							
5		3	3.06	Fund	tion Argum	ents					
6	ĺ.	4	4.04		REL						
7		5	4.66	COP	KREL						
8	Ĵ.	6	5.58			Array1	B3:B12		Ť	=	{1;2;1
9		7	6.91			Array2	C3:C12		Ť	=	{1.04
10	<u>í</u>	8	8.74							=	0.99
11		9	9.78	Retu	rns the corre	lation coeffi	icient betwee	n two data s	ets.		
12	j.	10	10.14				Array1 is	a cell range	of values. Th	e val	lues sl
13							01	r references t	hat contain	num	bers.
14	slope	intercept	r-squared								
15	1.058424	-0.23133	:C12)	Form	ula result =	0.99398260	6				
16				-							
				Help	on this fund	tion					

Click "OK." The formula should look like this in the formula bar:

=CORREL(B3:B12,C3:C12)

Note that the value returned by the CORREL function does not match the "r-squared" value on the chart. The CORREL function returns "R," so we must square it to calculate "R-squared."

1	A	В	С	D	E	F	G	Н	1	J
1										
2	1	X-Value	Y-Value			C 11 .				
3		1	1.04			Calibrat	tion Cur	ve		
4	1	2	1.95	12						
5		3	3.06	10				4x - 0.2313		
6	ĺ.	4	4.04	10			R* =	0.988		
7		5	4.66	8			-	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
8	ĺ.	6	5.58	Y-Value						
9		7	6.91	Y-V8			2 C			
10		8	8.74	4						
11		9	9.78	2						
12		10	10.14	2	Q					
13				0						
14	slope	intercept	r-squared		0	2 4	6	8 :	10 12	2
15	1.058424	-0.23133	0.993983				X-Value			
16						0	24			

Click inside the Function Bar and add "^2" to the end of the formula to square the value returned by the CORREL function. The completed formula should now look like this:

=CORREL(B3:B12,C3:C12)^2

File Home Insert Draw Page Layout Formulas Data Review View Developer 🔏 Cut - 11 - A A $\equiv \equiv = | \gg |$ ab Wrap Text Copy -Paste B I U - 🖸 - A -≡≡≡ ₫ 🗐 😇 Merge & Center 🖋 Format Painter Font Clipboard G. Alignment =CORREL(B3:B12,C3:C12)^2 CORREL Ŧ × f_{x} 1 В C D G A Е 1 1 X-Value Y-Value 2 **Calibration Curve** 3 1.04 1 12 4 1.95 2 y = 1.0584x - 0.2313 5 3.06 3 10 R² = 0.988 •. 6 4.04 7 8 4.66 Y-Value 8 5.58 6 6 9 6.91 10 8.74 4 8 11 9 9.78 2 12 10 10.14 0 13 10 12 0 2 4 6 8 14 slope intercept r-squared X-Value 15 1.058424 -0.23133 16

Press Enter.

After changing the formula, the "R-squared" value now matches the one displayed in the chart.

1	A	В	C	D	E	F	G	н	1
1									
2	1	X-Value	Y-Value			C 11			
3		1	1.04			Calibra	tion Curv	/e	
4	ĺ.	2	1.95	12					
5		3	3.06	10				4x - 0.2313	
6	l.	4	4.04	10			K- =	0.988	
7		5	4.66	8					
8	l.	6	5.58	Y-Value 9					
9		7	6.91	λ-V					
10		8	8.74	4					
11		9	9.78	2					
12		10	10.14			2			
13				0			-		
14	slope	intercept	r-squared	0	2	4	6	8 10	12
15	1.058424	-0.23133	0.988001420171094				X-Value		
16									

Step Three: Set Up Formulas For Quickly Calculating Values

Now we can use these values in simple formulas to determine the concentration of that "unknown" solution or what input we should enter into the code so that the marble flies a certain distance.

These steps will set up the formulas required for you to be able to enter an X-value or a Y-value and get the corresponding value based on the calibration curve.

slope intercept r-squared 1.058424 -0.23133 0.988 Enter 'X' to Solve for 'Y':	
1.058424 -0.23133 0.988 Enter 'X' to Solve for 'Y':	
X entry:	
Y result:	
Enter 'Y' to Solve for 'X':	
Y entry:	
X result:	

The equation of the line-of-best-fit is in the form "Y-value = SLOPE * X-value + INTERCEPT," so solving for the "Y-value" is done by multiplying the X-value and SLOPE and then adding the

INTERCEPT.

D	E	F	G	Н	I	J	K	L	M
	slope	intercept	r-squared						
	1.058424	-0.23133	0.988						
	Enter	X' to Solve	for 'Y':						
	X entry:	0							
	Y result:	+F3							
	Enter	Y' to Solve	for 'X':						
	Y entry:	-0.23133							
	X result:								

As an example, we put zero in as the X-value. The Y-value returned should be equal to the INTERCEPT of the line of best fit. It matches, so we know the formula is working correctly.

D	E	F	G	Н	1	J	К	L	М
	slope	intercept	r-squared						
	1.058424	-0.23133	0.988						
	Enter	X' to Solve	for 'Y':						
	X entry:	0							
	Y result:	-0.23133							
	Enter '	Y' to Solve	for 'X':						
	Y entry:	-0.23133							
	X result:								

Solving for the X-value based on a Y-value is done by subtracting the INTERCEPT from the Y-value and dividing the result by the SLOPE:

X-value=(Y-value-INTERCEPT)/SLOPE

D	E	F	G	Н	1	J	K	L	M
	slope	intercept	r-squared						
	1.058424	-0.23133	0.988						
	Enter	X' to Solve	for 'Y':						
	X entry:	0							
	Y result:	-0.23133							
	Enter '	Y' to Solve	for 'X':						
	Y entry:	-0.23133	· · · · · · · · · · · · · · · · · · ·						
	X result:	F3)/E3							

As an example, we used the INTERCEPT as a Y-value. The X-value returned should be equal to zero, but the value returned is 3.14934E-06. The value returned is not zero because we inadvertently truncated the INTERCEPT result when typing the value. The formula is working correctly, though, because the result of the formula is 0.00000314934, which is essentially zero.

D	E	F	G	H	1	J	K	L	N
	slope	intercept	r-squared						
	1.058424	-0.23133333	0.988						
	Ente	r 'X' to Solve fo	or 'Y':						
	X entry:	0							
	Y result:	-0.23133333							
	Ente	r 'Y' to Solve fo	or 'X':						
	Y entry:	-0.23133							
	X result:	3.14934E-06							

You can enter in any X-value you'd like into the first thick-bordered cell and Excel will calculate the corresponding Y-value automatically.

D	E	F	G	Н	1	J	K	L	N
	slope	intercept	r-squared						
	1.058424	-0.23133333	0.988						
	Ente	r 'X' to Solve f	Solve for 'Y':						
	X entry:	5							
	Y result:	5.060787879							
	Enter 'X' to Solve X entry: 5 Y result: 5.060787879 Enter 'Y' to Solve to Y entry: -0.2313	or 'X':							
	Y entry:	t: 5.060787879 ter 'Y' to Solve for 'X': y: -0.23133							
	X result:	3.14934E-06							
	x result:	3.14934E-00							

Entering any Y-value into the second thick-bordered cell will give the corresponding X-value. This formula is what you would use to calculate the concentration of that solution or what input is needed to launch the marble a certain distance.

					r-squared	intercept	slope	
					0.988	-0.23133333	1.058424	
					or 'Y':	r 'X' to Solve fo	Enter	
						5	X entry:	
						5.060787879	Y result:	
					or 'X':	r 'Y' to Solve fo	Enter	
						5	Y entry:	
						4.942567568	X result:	
						5	Y entry:	

In this case, the instrument reads "5" so the calibration would suggest a concentration of 4.94 or we want the marble to travel five units of distance so the calibration suggests we enter 4.94 as the input variable for the program controlling the marble launcher. We can be reasonably confident in these results because of the high R-squared value in this example.

READ NEXT

> How to Automatically Close Safari Tabs on iPhone and iPad

- > How to Fix a Slow Context Menu in Windows 10's File Explorer
- > How to Disable File Thumbnails on Windows 10
- > What Is Android Nearby Share, and Does It Work Like AirDrop?
- > Mac App Not Starting? Here's How to Fix It

The above article may contain affiliate links, which help support How-To Geek.

How-To Geek is where you turn when you want experts to explain technology. Since we launched in 2006, our articles have been read more than 1 billion times. Want to know more?